
Accident Prediction with Dashcam Video:
Final Report

Alvin Shek
Electrical and Computer Engineering

ashek@andrew.cmu.edu

Andy Zhang
Electrical and Computer Engineering

andyz@andrew.cmu.edu

Pinxu Ren
Electrical and Computer Engineering

pren@andrew.cmu.edu

Abstract

Object recognition algorithms deals with locating and classifying actions in videos.
Since the latest locating algorithms requires less powerful hardware, motivated by
the latest state-of-the-art real-time object detector You Only Look Once (YOLO),
we aim to test and compare various object detection algorithms. We also re-
implement the Anticipating Accidents in Dashcam Videos [7] approach and pro-
pose a new modification that applies attention not only to specific objects in an
image, but also attention across time on entire images in a video. We demonstrate
improved accuracy and comparable runtime during training and inference. Our full
presentation is linked here. Our code is linked here.

1 Introduction

Artificial intelligence has made much progress in vehicles, ranging from basic vehicle-assist on
freeways to full autonomy. Humans and self-driving vehicles alike need to prioritize their own safe,
effective driving behavior. However, how should they handle the unsafe behavior of other vehicles?
For our project, we would like to predict accidents a few seconds before they occur and provide
some metric of uncertainty on nearby drivers. This will enable drivers to perform emergency, evasive
actions just as the accidents happen rather than seconds later. Human drivers especially may not be
able to tell that accidents will happen, so our system will assist them.

Object detection is one of the most classic problems in computer vision. The key point is to detect
the target’s position in the given image, especially to locate and classify the target. Traditional
convolutional neural networks (CNNs) have been widely used in target recognition and classification,
but they can not locate the target in the image. In addition, classification of images containing
multiple targets has always been a major challenge for traditional CNN. The region based CNN
(r-cnn) is then introduced into the field of target detection to obtain greater gain. In the region based
recommendation framework, r-cnn extracts deep features based on CNN, combines classification
and boundary box regression to form a multi task learning model. However, the two-stage target
detector has the disadvantages of large amount of calculation, which makes it impractical for real
time object detection and classification. The You Only Look Once (YOLO) architecture was later
introduced as the first end-to-end object detection network. YOLO is a one-stage detector that only
’look at’ the image once. With a CNN it can simultaneously predict multiple boundary boxes and
their corresponding class probabilities. It has high accuracy and amazing real-time speed of detection.
After YOLO, more algorithms were raised, like Faster RCNN, YOLOv2, YOWO. These algorithms

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://docs.google.com/presentation/d/1zrvYlDEXQlLnXh-iJp5JF7tkM7ZYzjhJAzoG3gOIBS8/edit?usp=sharing
https://github.com/Alvinosaur/Accident_Prediction/tree/main/Anticipating-Accidents


has their advantages and disadvantages.

While Dashcams are popular in many countries such as Korea, Russia, and Taiwan to record accidents
and provide evidence during disputes. As a result, many accidents that occur have been recorded with
dashcams, making them a promising source of accident data. We will use videos from commercial
and non professional dash cameras to track vehicles and forecast collisions. Existing methods have
been proposed for our problem focus, so we want to validate their results as well as combine ideas
from different approaches into a new, novel architecture. We want to show the effect of object
detection method in the accident forecast, and how they could be applied by us to be used in the
accident detection tasks.

2 Related Works

2.1 Attention-based Models

The original Anticipating Accidents in Dashcam Videos [7] draws inspiration from [5] by learning
to apply attention spatially across a single image. Attention locations are not determined by the
prediction model. Rather, an upstream object detector detects vehicles (buses, cars, bikes, motorbikes)
as well as people. It crops and feeds each object into a feature extractor. These features inherently
represent various boxed regions in the original image, and as the model learns which features are
important (order is important when fed in as a matrix), we can visualize this attention on each
bounding box.

Attention is simply a normalized scalar weight applied to each object in the scene, and the sum of
attention values should sum to one. Suppose, for a given video frame at time t in a video, there
are J objects, each represented by a D-dimension feature vector: ajt , j <= 19. The 19 is a max
number of objects the model can handle since we feed in fixed matrix inputs of shape (B x 100 x 20 x
D) for B batch size. The 20th entry is a feature representing the entire image, not any particular object.

This paper uses LSTM’s, or Long Short Term Memory, to capture historical information. An LSTM
is fed in the current input xt as well as its previous hidden state, ht−1 to produce the a new hidden
state ht. At the same time, ht−1 is used to generate attention weights for the objects in the current
frame’s image:

ejt = g(Whht−1 +Wxx
j
t + b)

αj
t =

exp(ejt)∑
j exp(ejt)

In the first step, g(z) is the nonlinear activation function, tanh. In the second step, the logits ejt are
normalized with a softmax function to produce final attention weights αj

t . This is so they all sum to 1.
One key point to note is that at any given time frame, there often will not be 19 objects present. In
this case, the values of the empty spots in the input matrix are masked with zeros. This makes sure
they do not get any attention. Intuitively, one can think of αj

t = p(ajt |ht−1) as the probability that
the jth object is important in accident prediction. ht−1 fulfills the Markov Property and captures all
previous historical information.

Next, all the object features are weighed and summed together, hence the term "soft attention":

ât =
∑J

j=1 α
j
ta

j
t

This is then concatenated with the full image feature, the 20th entry of the original input matrix:

Xt = [a20t ; ât]

2



This final feature vector is transformed with ht−1 in a nonlinear affine transform (Linear layer
followed by softmax activation) to output two values representing p(accident) and 1− p(accident)
respectively. In practical usage, it is a hyperparameter that a driver would tune to set the threshold for
what is noise and what constitutes a real risk.

2.2 CNN related two stage detector

R-CNN [9] is one of the most important and groundbreaking works to introduce CNN into the
field of object detection. It uses Selective Search to generate potential bounding boxes in images,
and then classifies them. Then it introduces Fast R-CNN [10] and Faster R-CNN [15], by sharing
computation and using neural network to propose regions instead of selective search to reduce
computing time. These three algorithms belong to two-stage target detector that have the region of
interest generated by the region recommendation network, then the target is classified by pipeline,
and the boundary box regression is performed. The algorithm has high precision, but it is often slow
in practical application.

2.3 YOLO detectors

The YOLO[11] architecture eliminates the need for two-stage detector and it is the first end-to-end
object detector. YOLO regards object detection as a simple regression problem by acquiring an
input image and learning its class probability and boundary box coordinates. It’s incredibly fast and
produces competitive results in real time. However, because YOLO processes global images, it is
difficult for YOLO to accurately locate small objects, such as a flock of birds. Although this might
not be a common situation in the context we want to research about.

Based on YOLO box, the recall rate for YOLOv2[12] is improved because it uses anchor boxes to
predict bounding boxes. In order to improve the recognition accuracy of small targets, a passthrough
layer was used to extract fine-grain characteristics. YOLOv2 also considers multi-scale training to
enhance the robustness of the model to images of different scales. In order to facilitate the speed
of object detection, YOLOv2 compressed the feature representation into Darknet-19 network using
global average pool and use a small sized filter to reduce floating-point arithmetic.

3 Contribution

3.1 Temporal-based Attention for Accident Prediction

Our first step in analyzing Anticipating Accidents in Dashcam Videos [7] was to simply visualize the
output of the model. We were able to see specific objects given higher attention as shown in the
below figure 1:

Figure 1: Object with green bounding box given higher attention during accident.

We noticed in many other scenarios the model would just wrongly place attention on vehicles that
were completely still. Then the model would predict high probability of accident when no accident

3



was present because it kept hallucinating that the still object was in an accident. This is shown below:

Figure 2: Model hallucinating that still object in front is in an accident.

Figure 3: Due to constant hallucinations, model predicts high probability of accident.

We decided to introduce a new modification: learn attention across time on the full image features
a20t . Our proposed model overall still retains the original paper’s spatial object attention, but now
additionally learns which of the previous k image frames are most important for predicting an
accident in the current frame. This idea drew inspiration from the Natural Language Processing
domain and the end-to-end Speech-to-text model of Listen, Attend, and Spell [8]. Such models learn
to gradually shift their focus across time in an audio recording to correctly generate text.

We first create an Encoder model that takes as input a window of the past K video frames including
the current frame: [a20t−k, a

20
t−k+1, ...a

20
t ]. Note that these are the full image frame features, not

specific object features. Next, this entire sequence is passed into Pytorch’s LSTM module, which
internally handles the use of hidden states for us. The LSTM makes an output at each timestep, and
in total, we get a new output matrix of shape (B x K x H) where H is the hidden dimension size and
K is the length of our time window. This entire matrix is then fed into two separate linear layers to
generate a key WK and value WV matrix respectively, each of size (B x K x H’).

At any given timestep, the original paper [7] would simply use the current full image feature: a20t
and concatenate that with the combined object features. Instead, we multiply a20t with key matrix
WK followed by a softmax to get normalized attention weights We. In [8], the full image feature
would be called a "query". The learned key matrix in essence is multiplied with the current image
features to determine which of the past K frames are most important. The output weights are then
batch-multiplied (bmm) with the value matrix, which essentially performs a weighted sum of the past
K frames’ information:

â20t = bmm(We,WV )

This can be summarized in the diagram:

4



Figure 4: The above diagram shows how attention across images in time is computed.

Below is the loss function used, which is time-weighted CrossEntropyLoss:

J =
∑T

t [−yet−klog(p)− ylog(1− p)]

where y = 0 (no accident) or 1 (accident) represents a sequence of T video frames before an accident.
k denotes the timestep or frame index where the accident occurs in the entire sequence. t is a given
frame’s timestep or index. p is the model’s predicted probability of an accident occurring at that
timestep.
The above is basically a modified version of Cross-entropy loss, where only the positive examples
with accidents have the additional weights. As t approaches k, the exponent will approach 0,
and the entire weight will approach 1. If t « k, then the entire weight will approach 0. This
intuitively means we should penalize failures to predict accident the closer we get to the accident.
If we are far from the accident, we shouldn’t be penalized that much for failing to predict. For a
given sequence of T video frames, all frames in that video are assigned the same label (accident or not).

Below summarizes the network sizes.

Table 1: Network Parameters

n-input n-detection n-hidden n-img-hidden n-att-hidden n-classes n-frames

4096 20 512 256 256 2 100

n-input denotes D, the input feature dimension.
n-detection = 1 + J, where J is the max number of objects tracked in a given frame.
n-hidden is the hidden size of the final LSTM that takes in the concatenated full image and object
features: Xt = [â20t ; ât]
n-img-hidden is the output size of the features in the Key and Value linear layers.
n-att-hidden is the transformed feature size of the object features.
Notice that n-hidden = n-img-hidden + n-att-hidden since the full image and object features are
concatenated.
n-classes = 2 since we predict p(accident) and 1− p(accident).
n-frames = K = 100, our time window length.

Below summarizes the hyperparameters we used. We stuck with the paper’s own original parameters:

5



Table 2: Training Parameters

learning-rate n-epochs batch-size display-step

0.0001 20 10 10

Table 3: Final Performance

Model Average Precision Prediction Time Before Accident Runtime Per Epoch

Baseline 0.64 1.149s 498.7s

Our Method 0.667 1.257s 583.4s

As you can see above, our model has higher average precision and predicts accidents on average
earlier. However, our model needs to compute new attention values across the past K video frames,
and thus takes an extra 80 seconds approximately per epoch. Given a batch size of 10 videos and 128
batches in total, processing a video of 100 frames takes approximately 0.0625 seconds longer with
our model.

Figure 5: Evaluation Loss vs Epoch. At the 18th epoch, we achieved an evaluation loss of 1.625
compared to the baseline model’s loss of 1.66

6



Figure 6: Precision vs Recall. One can interpret this by picking a desired level of recall (example 0.8)
and seeing the corresponding precision.

4 Experiments

We also re-implemented other object detection method such as YOLOv1. The core idea of YOLO
series of detection is to use the entire picture as the input of the neural network, and directly return the
position of the bounding box and the category to which the bounding box belongs in the output layer,
which facilitate the detection process. This method’s latest version, YOLOv4, is the state-of-the-art
method for object detection. We want to have a better understanding of this method through
implementing this method. We use the ResNet50 as the backbone of YOLO and trained it on the
dataset of voc2007 and voc2012. We have a reasonable result of accuracy, which is about 60 percent.
The training and validation loss of the first 8 epochs are shown in Fig.7. Using Darknet-19, a convo-
lutional neural network framework, we also trained on the voc2007 and voc2012 training sets using
YOLOv2. The average loss and mAP during training are shown in Figure 8. Testing the trained model
on voc2007’s testing set, we obtained a mean average precision of 68.38% at an IoU threshold of 50%.

Figure 7: Training and testing loss vs training batches.

7



Figure 8: Training loss vs training batches for YOLOv2 on VOC 2007 Test Set

Figure 9: One result output from YOLOv1.

Recently in April 2020, YOLOv4 was introduced by Alexey Bochkovskiy with new features that was
shown to achieve 65.7% AP50 on the MS Coco dataset with a speed of 65 FPS on a Tesla V100.
[13] As our goal was to achieve as near real-time object detection as possible without sacrificing
too much precision, we decided to train and test YOLOv4 on our dataset. As a one-stage detection
method, YOLO would ideally reach a minimum of roughly 25-30 frames per second during model
evaluation and be able to follow, evaluate, and detect objects during a dashcam’s operation during
vehicular operation. On the other hand, we also wanted to look at a two-stage detection method as
well to compare YOLOs speed and accuracy. After reading about Facebook’s Detectron2 [14] object
detection implementation and inclusion of popular object detection models such as Fast R-CNN,
Faster R-CNN, and RetinaNet, we decided to train and test on our data set using detectron2’s faster
R-CNN model based on the ResNet-50 model. Detectron claimed that their R50 Faster R-CNN
model had a training time of 0.209 seconds per iteration, 0.038 seconds per image for each inference,
and a box AP of 40.2. [14] This way, we could have a valid comparison between one of the fastest
two-stage detection models and a fast but relatively accurate one-stage detection model.

8



YOLOv2 was the initial improvement for the original YOLO method, and YOLOv4 was built with
Darknet53 as its backbone. [13] Darknet53, a convolutional neural network 53 layers deep that was
first introduced with YOLOv3, was ideally faster than Resnet and used residual connections that have
already been trained on a multitude of images from ImageNet. To attempt to introduce some variation
in training and detection, we changed the resolution size for YOLOv4’s model. By default, the
network takes in images and converts to a square-sized resolution (e.g. 416 by 416 or 608 by 608) that
is a multiple of 32. Lower resolutions should lead to faster training speed and evaluation/inference
times with decreased precision while higher resolutions would lead to slightly slower training speeds
and evaluation/inference times with better precision for smaller objects as nothing is shrunk down.
Finally, we also tried training with a YOLOv4-Tiny model that was the YOLOv4 model but with
only 2 YOLO layers instead of 3 on top of the Darknet architecture. We hoped to reduce one entire
layer of output and drastically improve speed but were not exactly sure of the definite tradeoffs for
speed/precision that would occur.

Our dataset, which was the Predicting Dashcam Accidents’ dataset, consisted of 620 videos that
showed short dashcam recordings around Taiwan with a portion being recorded accidents. [1]
We split the data set by turning each video into each of its 100 separate contained frames, then
randomly selecting 10,000 images for training and 2000 each for testing and validation. We settled on
10,000 images due to our limited time and GPU compute ability which meant that we had to have a
reasonably-sized data set that we could train on in time to procure adequate results. More importantly,
we also had to be sure to select random images because as we split the videos up frame-by-frame, a
lot of images would be extremely similar as they were mere milliseconds apart, which could lead
to potential over-fitting. To combat this, we selected images for each section (train, test, validation)
entirely separate from the others (e.g. an training image part of video 55 would mean video’s 55 other
frame images would not be used in test/valid). However, due to this constraint, our data set ultimately
became a little small due to the need for frame/image variance and as a result some slight over-fitting
may have occurred to only training on 10,000 images. In the future, a more complete result from
these object detection methods could be potentially obtained on a similar data set with many more
images that are not so closely related.

Figure 10: Loss Graph for YOLOv4
(416 Resolution) over 6500 iterations or
(6500 / (10000 training / 64 batch size))
≈ 41.6 epochs

Figure 11: Loss Graph for YOLOv4
(608 Resolution) over 3800 iterations or
(3800 / (10000 training / 64 batch size))
≈ 24.32 epochs

Figure 12: Loss Graph for Faster R-
CNN over 6000 iterations or 10000
trainig / 64 batch size = 64 epochs

9



Figure 13: Frames per Second vs. Object
Detection Method/Variation

Figure 14: Inference Time (ms) vs. Ob-
ject Detection Method/Variation

Figure 15: Training Speed(s/iteration)
vs. Object Detection Method/Variation

During our training, our loss graphs appeared to follow the correct decline. Unfortunately, due to
our limited GPU (RTX 2080) and time, we had to end training early for several of the YOLO model
variants before they fully converged.

From our training results, we can see that YOLO clearly has a higher FPS than Faster-RCNN when
tested on traffic videos. (Figure 13) In fact, YOLOv4 at 416 Resolution (32.78 FPS) is roughly 900%
faster than Faster R-CNN (3.6 FPS) and almost 2000% faster for inference time (28 ms vs. 622 ms)
on average. (Figures 13 & 14) Clearly, if we are aiming for near real-time detection, Faster R-CNN
is not fast enough to make the cut. Looking a bit more closely at the YOLO variants, we see that
YOLOv2 lags behind in training speed, inference time, and FPS while for YOLOv4, as you increase
the resolution, the model has faster Inference Time but lower FPS and Training Speed.

As seen in Figure 16, our precision results are equally as telling. The Faster R-CNN had the highest
mean average precision for nearly every category, but as mentioned previously, was incapable of
being run in real-time, rendering it useless for live dash-cam predictions. YOLOv2 predictably was
worse than most of the YOLOv4 variations, but was out performed YOLOv4-Tiny on some metrics.
For YOLOv4, we see that as the network resolution increased, the mean average precision rose
along with it. At 608x608, we obtain a reasonable mAP of 0.66, while a mAP of 0.45 is obtained at
320x320. Interestingly, YOLO seemed to do relatively well for the large objects and specifically the
buses and cars. However, all the YOLO versions suffered a drastic drop in mAP when attempting
to identify smaller objects like bikes, motorbikes, and people. Notably, even at 608x608 resolution,
YOLOv4 only had a mAP of 0.25 for bikes and 0.37 for all small objects in general. On the other
hand, the Faster R-CNN model performed relatively well on smaller objects with smaller objects but
suffered a big dropoff in comparison to large objects. Another interesting fact was when the threshold
was set to 75%, even the Faster R-CNN model dropped to 0.39 and only 0.02 more than YOLOv4
at 608x608. It appears that both models have trouble detecting objects with certainty and smaller
objects especially. Finally, the previously mentioned fastest model, the YOLOv4-Tiny variation with
only 2 YOLO layers, did not fair well in any of the mAP measurements with a 0.29 mAP overall at
50% threshold. These trends are further confirmed by looking at the average precision vs. FPS graph,
where we see the Faster R-CNN model is clearly the most accurate at mAP@50 but extremely slow.
Else, the YOLO models are extremely fast and close to real-time but the lowering the resolution or
number of layers caused a big dropoff in mAP.

10



Figure 16: Mean Average Precision at 50% and 75% thresholds and also for small/large objects and
for each specific class in our data set

Figure 17: Average Precision vs. FPS

5 Datasets

Dashcam Accident Dataset is the dataset we use. The dashcam is a cheap camera that can be installed
in the car to record the visual observation of the street level from the driver’s point of view. In Russia,
Taiwan and other places, almost all new cars have been equipped with dashcam in the past three years.
As a result, a large number of dashcam videos are shared on video sharing sites such as YouTube.
The research team in [7] collect dashcam videos shared online from many users, targeting accident
videos with annotation of address information or GPS location. In this way, they collected videos that
all have high-quality (720p resolution). The dataset includes 678 videos taken in six major cities in
Taiwan, which include: 42.6% of motorcycles hit cars, 19.7% of cars hit cars, 15.6% of motorcycles
hit motorcycles, and 20% of other types. Almost all the big cities on the west coast of Taiwan
are covered. Then the team in [7] did hand annotation with temporal locations of accidents and

11



Figure 18: Precision and Speed Metrics

Figure 19: YOLOv4 Prediction on Test Image
Figure 20: Faster R-CNN Prediction on Test
Image

the moving objects in each video. The below table lists the distribution of different objects in the scene:

Table 4: Dataset constitution parts

Car Motorbike Person Bus Bike Total
20829 15091 13436 1604 185 51145

6 Discussion and Future works

After the midterm progress check, we have finally fixed the issues with our own implementation of
the paper’s architecture. We found two issues:
1. Videos are each 100 frames in length with the accident (if any) always being the last frame. In
terms of a classification problem, all frames of a video containing an accident will have a label of 1.
Frames of a video without an accident will have a label of 0. Pytorch’s CrossEntropyLoss() function
takes in predictions of shape (N x C) where N is the number of samples and C is the number of
classes. C = 2 in our case. Since we have one label per video, we need to broadcast this from shape (1
x 1) to (100 x 1) so all frames use this label target. We did not reshape the labels correctly. We wanted
this format: [video1-frame1, video1-frame2, ... video1-frame100, video2-frame1, ...] but instead
had this format: [video1-frame1, video2-frame1, ... videok-frame1, video1-frame2, video2-frame2...].

12



2. Another core issue was that we were not masking attention correctly. Each frame, we have a
maximum of 20 objects tracked at any given moment and their extracted features. So our features are
of shape 20 x D. However, there can be less than 20 objects actually present in a frame, so only k <=
20 features will be valid. When generating attention values for each feature, we apply Softmax()
function so attention weights over all objects sum up to 1. This is similar to following the total
probability law that the probability of all objects being useful should sum to 1. The bug was that we
were computing first softmax, and after masking out the non-existent object attention weights. This
means attention weights do not all sum to 1, and the non-zero, remaining attention weights are wrong.

We noticed that the loss would plateau and converge around only 20 epochs. We believe that quick
convergence, but only marginal better performance can be attributed to our relatively small layer
sizes. Specifically, our rich input features have dimension (4096 x 1) and contain both visual and
motion features. We transform this down to only (256 x 1) features, and this sharp reduction may be
a bottleneck that limits how much information our model can obtain from the data.

Another high-level concern we had was that the raw video feed of a dashcam video can be very noisy
from dirt on the lens or motion blur from the car shaking. One possible future step can be to smooth
out the original input video feed and perform other data cleansing techniques. In this project, we
were already provided the extracted features. Another possible work is to compare the features of
other classification models. This original paper uses VGG-16’s backbone to extract features from
images. It would be interesting to compare performance using other models’ extracted features, for
example ResNet50 or MobileNetv2.

7 Division of work

Alvin Shek: draft reports, review literature and present. Develop the time-based attention for accident
prediction and re-implement original paper architecture in Pytorch from Tensorflow. Write scripts to
convert dataset into COCO format.

Andy Zhang: draft reports, review literature and present. Run YOLOv4

Pinxu Ren: draft reports, review literature and present. Run YOLOv3 baseline models.

13



References

[1] Bao, Wentao, et al. “Uncertainty-Based Traffic Accident Anticipation with Spatio-Temporal Relational
Learning.” ArXiv.org, 1 Aug. 2020, arxiv.org/abs/2008.00334.

[2] Maqueda, Ana I., et al. “Event-Based Vision Meets Deep Learning on Steering Prediction for Self-Driving
Cars.” ArXiv.org, 4 Apr. 2018, arxiv.org/abs/1804.01310.

[3] Fatima, Mishal, et al. “Global Feature Aggregation for Accident Anticipation.” ArXiv.org, 16 June 2020,
arxiv.org/abs/2006.08942.

[4] Suzuki, Tomoyuki, et al. “Anticipating Traffic Accidents with Adaptive Loss and Large-Scale Incident DB.”
ArXiv.org, 8 Apr. 2018, arxiv.org/abs/1804.02675.

[5] Xu, K., et al. "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention." ArXiv, 2015,
https://arxiv.org/pdf/1502.03044.pdf

[6] Jain, A., Koppula, H.S., Raghavan, B., Soh, S., Saxena, A.: Car that knows before you do: Anticipating
maneuvers via learning temporal driving models. In: ICCV. (2015) https://arxiv.org/abs/1504.02789

[7] Chan FH., et al. "Anticipating Accidents in Dashcam Videos." ACCV 2016. Lecture Notes in Computer
Science, vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-79

[8] Chan, W., et al. "Listen, Attend and Spell" arXiv 2015, https://arxiv.org/abs/1508.01211

[9] Girshick, R., et al. "Rich feature hierarchies for accurate object detection and semantic segmentation" arXiv
2013, https://arxiv.org/abs/1311.2524

[10] Girshick, R. "Fast R-CNN" arXiv 2015, https://arxiv.org/abs/1504.08083

[11] Redmon, J. "You Only Look Once: Unified, Real-Time Object Detection" arXiv 2016,
https://arxiv.org/abs/1506.02640

[12] Redmon, J "YOLO9000: Better, Faster, Stronger" arXiv 2016, https://arxiv.org/abs/1612.08242

[13]A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object
Detection,” 2020; http://arxiv.org/abs/2004.10934.

[14] Y. Wu, A. Kirillov, F. Massa, R. Girshick, and W. Lo, “Detectron2” 2020;
https://github.com/facebookresearch/detectron2.

[15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-timeobject detection
with region proposal networks. InAdvances in neural information processingsystems, pages 91–99, 2015.

14


	Introduction
	Related Works
	Attention-based Models
	CNN related two stage detector
	YOLO detectors

	Contribution
	Temporal-based Attention for Accident Prediction

	Experiments
	Datasets
	Discussion and Future works
	Division of work

