
Final Presentation
Vedant Parekh, Siddesh Nageswaran, Alvin Shek

Advisors: Professor Savvides, Rashmi Anil

Introduction and Motivation

● What is Hawkeye?
a. An automatic drone tracking system with live

aerial footage
b. Shoots aerial video that does not require human

control, eliminating human error

● Use Cases:
a. Useful for recreational filming, rescue missions

etc.
b. Imagine shooting exciting videos of sports events

(your Turkey Bowl game), or having a hands-free
vlogging experience!

● Key User Requirements:
a. Drone Tracking: % of frames with target in shot
b. Drone Stability: Minimal drone jitter, steady shot

Wearable DeviceUser ComputeDrone Compute

System Specification

Raspberry
Pi 4 Jetson TX1 Display

Buttons
and

passives

Camera
RaspiCamV2

Pixhawk 1
Flight

Controller

5100mAh
Battery LiPo 3S

Battery

HDMI (for video)

GPIO

Video Streaming

Flight Pos. Commands

MIPI
CSI-2

Over WiFi
using ROS

Flight Pos.
Commands /
Flight Data

5V Buck
Converter S

er
ia

l 0

System Specification - Software

Launch
signal

Rpi connects
to flight

controller

Takeoff
Script

Camera
start

signal

Rpi sends
image frame

Target
Detection

Update
State

Estimation

Update
Motion

Plan

Broadcast
Motion

Plan

Identify center /
bounding box from

frame

Create model for
future target
movement

Create drone flight path to:
1) Keep target in frame center
2) Minimize control cost

(penalty for excessive drone
movement)

Camera
stop

signal

Landing
Script

Complete solution

● We will show:
○ Drone manually taking off and streaming video to wearable device
○ Live display of target detection and state estimation results along with the

resulting planned flight path
■ Flight path will not be broadcasted back to the drone
■ Drone will be guided manually

○ Full demonstration of autonomous motion in simulation
■ Drone will follow the given flight path

Challenges

Local Position Error:
● Flight controller’s internal x,y,z local position estimates are very off
● When still, positions drift within +/- 3 m every few seconds
● Seemingly random where the drone ends up when given the same

positional waypoint

Extreme Sensitivity to Wind:
● Drone topples sideways in even slight wind gusts

Dealing w/ the Issues:
● Cannot fly drone safely fully autonomously
● Instead, we can demonstrate target detection / motion planning

while flying drone manually rather than having the drone follow the
resulting motion plan

● Autonomy demonstrated on simulated flight controller with exact
same interface as real flight controller

FIgure: Local position
estimates for the path
walked above

FIgure: Drone
flailing wildly
while trying to
hold position
during mild
wind

Testing: Image Processing

Operation Average Time
Taken (s)

FPS

Capture Image 0.344 2.91

Stream Image to TX1 0.25 4

Convert Image to Cv2 7.14e-5 14006

Detect Target 2.67e-4 3745

Estimate 3D Position +
Kalman Filter

6.50e-4 1538

Motion Planning 0.0135 74.07

Overall 0.344 2.91

Desired 5 - 10

Bottleneck

Testing: Target Detection

Figure: Example false negative

False Positive Rate: #Images with detection / No target present
False Negative Rate: #Images without detection / target is present
Average Pixel Error: Distance from predicted target center to actual center

FP Rate FN Rate Avg. Pixel
Error

Actual 0% 14.78% 11.87

Desired 2% 10% (N/A)

Figure: Predicted vs. actual target center

Testing: Drone Stability and Tracking (simulation)

Drone Tracking: % of frames where the target is within frame
Drone Stability: % of 3 second windows where drone position is stable

Testing
Condition

Tracking Stability

Walking Only 100% 100%

Running Only 88% 100%

Walking +
Running

97% 93.75%

Desired 90% 90%

Trade-Offs

Current
Design

Higher
Control
Cost

Lower
Control
Cost

Tracking 97% 47% 84.58%

Stability 93.75% 100% 43.75%

Motion Planning
● Balancing control cost vs. tracking accuracy
● More control cost = more stable/minimal movement
● Less control cost = jerky movement but higher tracking accuracy

Figure: Motion planner with very low control cost
(jerky movement)

Figure: Motion planner with very high control cost
(stable but can’t adapt to changes in target motion)

Trade-Offs

Image Streaming
● Uncompressed Images (what we use) vs. Compressed Images

○ Bottleneck -> camera capture
■ Uncompressed: 2.91 FPS, Compressed: 2.94 FPS

○ There IS a difference in streaming (4 FPS vs. 6.67 FPS), but that’s
irrelevant since it isn’t bottleneck

○ No benefit to loss of quality from compression

State Estimation
● New target detection data vs. Current target model

○ The more that new data is weighted, the noisier the predicted path potentially becomes
○ The more the current model is weighted, the more the predicted path drifts from the actual one

● Model of target’s acceleration
○ Modeling a higher potential for acceleration makes path jerkier
○ But modeling a lower potential for acceleration may cause predicted path to

lag behind actual one

Updated Schedule

