Final Presentation

Vedant Parekh, Siddesh Nageswaran, Alvin Shek
Advisors: Professor Savvides, Rashmi Anil

Introduction and Motivation

e What is Hawkeye?
a. An automatic drone tracking system with live
aerial footage
b. Shoots aerial video that does not require human
control, eliminating human error

e Use Cases:
a. Useful for recreational filming, rescue missions

etc.

b. Imagine shooting exciting videos of sports events
(your Turkey Bowl game), or having a hands-free
vlogging experience!

e Key User Requirements:
a. Drone Tracking: % of frames with target in shot
b. Drone Stability: Minimal drone jitter, steady shot

System Specification

Drone Compute

Camera
RaspiCamV2 -

5V Buck
Converter

5100mAh
Battery

User Compute

Wearable Device

Raspberry

Pi 4

Flight Pos.
Commands
Flight Data

Pixhawk 1
Flight
Controller

Over WiFi
using ROS

Buttons

LiPo 3S

Battery

and
passives

HAWKEye

System Specification - Software

Rpi connects
to flight
controller

Takeoff
Script

—

: Update Update Broadcast
Rpi sends Target) .

m— e |yl | on | State [wmmmmyd Motion m—] |\/otion
Estimation Plan Plan

Identify center / Create model for Create drone flight path to:
bounding box from future target 1) Keep target in frame center
frame movement 2) Minimize control cost
(penalty for excessive drone
Landing movement)

Script

H/WKEye

Complete solution

e We will show:
o Drone manually taking off and streaming video to wearable device
o Live display of target detection and state estimation results along with the
resulting planned flight path

m Flight path will not be broadcasted back to the drone
m Drone will be guided manually

o Full demonstration of autonomous motion in simulation
m Drone will follow the given flight path

H/WKEye

Challenges

Local Position Error:
e Flight controller’s internal x,y,z local position estimates are very off
e When still, positions drift within +/- 3 m every few seconds
e Seemingly random where the drone ends up when given the same
positional waypoint

Flgure: Local position 17
exe s . estimates for the path
Extreme Sensitivity to Wind: walked above .

e Dronetopples sideways in even slight wind gusts e

Flgure: Drone

Dealing w/ the Issues: flailing wildly
e Cannot fly drone safely fully autonomously while trying to
e Instead, we can demonstrate target detection / motion planning hold position

while flying drone manually rather than having the drone follow the Svli‘rr]'gg mild

resulting motion plan
e Autonomy demonstrated on simulated flight controller with exact

same interface as real flight controller “%Wkive

Testing: Image Processing

Operation Average Time FPS
Taken (s)

Capture Image 0.344 2.9 Bottleneck
Stream Image to TX1 0.25 4
Convert Image to Cv2 7.14e-5 14006
Detect Target 2.67e-4 3745
Estimate 3D Position + 6.50e-4 1538
Kalman Filter
Motion Planning 0.0135 74.07
Overall 0.344 2,91

Desired 5-10 “ AWKEVE
y

Testing: Target Detection

False Positive Rate: #lmages with detection / No target present
False Negative Rate: #Ilmages without detection / target is present
Average Pixel Error: Distance from predicted target center to actual center

N
%Z V(& —)2 + (G — w)?

FP Rate FN Rate Avg. Pixel

Error
Actual 0% 14.78% 11.87
Desired 2% 10% (N/A)

Figure: Example false negative

Figure: Predicted vs. actual target center

H/WKEye

Testing: Drone Stability and Tracking (simulation)

Drone Tracking: % of frames where the target is within frame
Drone Stability: % of 3 second windows where drone position is stable

Testing Tracking Stability S S————
Condition S
ot
Walking Only = 100% 100% o
Q
Running Only | 88% 100% _
Walking + 97% 93.75% -
Running 7

Desired 90% 90%

Trade-Offs

Motion Planning Dosian | Conrel | Gonieo
e Balancing control cost vs. tracking accuracy Cost Cost
e More control cost = more stable/minimal movement Tracking | 97% 47% 84.58%
e Less control cost = jerky movement but higher tracking accuracy
Stability 93.75% 100% 43.75%

~lmesls%Zln kAl S L1 IER AT ST

4R}

NO3

. o (-]
Q Q
- -
® | ®
© ©

O3 s

i g

Figure: Motion planner with very high control cost Figure: Motion planner with very low control cost

(stable but can't adapt to changes in target motion) (jerky movement) “/g kE
HWKEYE

Trade-Offs

Image Streaming
e Uncompressed Images (what we use) vs. Compressed Images
o Bottleneck -> camera capture
m Uncompressed: 2.91 FPS, Compressed: 2.94 FPS
o There IS a difference in streaming (4 FPS vs. 6.67 FPS), but that's
irrelevant since it isn't bottleneck
o No benefit to loss of quality from compression

State Estimation
e New target detection data vs. Current target model
o The more that new data is weighted, the noisier the predicted path potentially becomes
o The more the current model is weighted, the more the predicted path drifts from the actual one
e Model of target’s acceleration
o Modeling a higher potential for acceleration makes path jerkier
o But modeling a lower potential for acceleration may cause predicted path to
lag behind actual one

H/WKEye

Updated Schedule

Week4 Week5 Week6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Legend:
1 Phase 1: Design -Vedanl
1.1 Make overall block diagram Alvin

1.2 Chooseffinalize components Siddesh
Together

1.3 Set-Up Jetson TX1
1.4 Order components
1.5 Familiarize ourselves with drone API and simulator

1.6 Familiarize ourselves with Jetson TX1 API

1.7 Familiarize ourselves with wearable display communication protocol
1.8 Design Presentation
1.9 Design Report
2 Phase 2: Pre-integration
2.1 Implement color filtering and blob detection
2.2 Test detection on static images

2.3 From target data across multiple frames, calculate velocity vector

2.4 Use calculated velocity along with a model for target movement to predict future
2.5 Test detection on live video (long distance with smaller target since blob detection parameters need to be tuned)
2.6 Successfully send sample motion commands to drone in simulation, then on physical drone

2.7 Design a general motion planning stack; design to easily integrate with target tracking
2.8 Test and debug the motion planning stack
2.9 Implement communication between camera and RPi Zero, film sample video
2.10 Implement video streaming over Wifi between RPi and TX1
2.11 Implement hardware protocol (ex. UART, 12C) to interface between TX1 and display
3 Phase 3: Integration
3.1 Map target's motion in video to desired motion of drone
3.2 Design circuitry for the wearable device (ex. display, buttons. power supply etc.)
3.3 Hook up buttons to the TX1 and configure them to send start and stop instruction to RPi
3.4 Integrate RPi start stop signals received from nano with the drone flight controller

3.5 Design safety fallback behavior and validate on simulation and on drone
3.6 Integrate the flight parameter data generated by TX1 with the flight controlier
3.7 Create housing for Jetson TX1 and display so that they can easily be wom by the user
3.8 Create chassis to house RPi and camera onto the drone and verify camera angle
4 Phase 4: Performance testing

4.1 Verify that video streaming performs with a stationary target
4.2 Verify drone can continuously track target during flight w/o streaming video Il
4.3 Verify that drone can match speed of target that is varying between speedsii
4.4 Verify live video from drone can be seen on wearable display for a moving targetil
4.5 Herate and repeat tests Il
4.6 Slack
5 Final Report
5.1 Record demo video Il
5.2 Edit video Il
5.3 Final presentation Il

H/WKEye

