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Experiments and Results

- Simulations are expensive to build and run - Comparison of baselines with proposed method
- Requires a lot of engineering effort and scaling up is computationally expensive - Environments: Half-Cheetah and Walker2D MuJoCo environments
- Difficult to model complex interactions - Metrics - 1-step dynamics prediction, N-step dynamics prediction
- Unknown physical parameters - Learned graph using the inference module
- Unknown dynamics equations and interactions Walker 2D Half Cheetah

- Prior knowledge of structure isn’t available
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- Applying wrong assumptions can cause model inaccuracies
- Exploitation by Reinforcement Learning agents

- Learned models enable model-based planning and control
- Learning dynamics requires only prior data
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- Input: Trajectory of node/joint states and actions S 10-
- Actions executed on Half Cheetah and Walker2D Mujoco models e 05
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(@) Overall learning architecture of our proposed method
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inferonce i by CNN k module S {e;} . e - Interaction Networks perform the best wi e given graph architecture
TR - e L Bt (Encode- = {0} - EPD does not provide us with the improvement in performance that we expected
(CDN) : : : [ ] Process- a - More complicated model. Many hyperparameters to tune.
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Learning edge type and edge parameters - Baseline 4 performs better than our proposed architecture
e - The graphs learned using baseline 4 are sparser than the graphs learned using CDN+EPD
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- =, Ed:ge t;fpe mziiiers _ >, 1. Graph Networks: Sanchez-Gonzalez, A., Heess, N., Springenberg, J.T., Merel, J., Riedmiller, M., Hadsell, R.
d and Battaglia, P., 2018, July. Graph networks as learnable physics engines for inference and control.
‘ ‘ . _ - Applies graph networks on MuJoCo environments for dynamics predictions.
(b) The inference and dynamic modules that form the key elements of the learning architecture 2. Interaction Networks: Battaglia, PW., Pascanu, R., Lai, M., Rezende, D. and Kavukcuoglu, K., 2016.
Interaction networks for learning about objects, relations and physics.
- Baselines - Used interaction networks to predict future states and estimate potential energy in n-body systems
(i.e. balls bouncing in a box)
Inference module Dynamics module 3. Encode-Process-Decode: Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J. and Battaglia,
) P., 2020, November. Learning to simulate complex physics with graph networks
Baselmel _______________________________________________________________________ Graphknown _________________________________________________________________________________ M LP ________________________________________________ - Uses graph networks to simulate complex particle-based systems
Baseline 2 Graph known Graph Network [1] 4. V-CDN: Lj, Y., Torralba, A., Anandkumar, A., Fox, D. and Garg, A., 2020. Causal discovery in physical
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- systems from videos.
Baseline 3 Graph known Encode-Process-Decode [3] - Proposed the Visual Causal Discovery Network (V-CDN) to estimate causal structures in a system
Baseline 4 Causal Discovery Network [4] Graph Network [1] based on keypoints
Proposed method Causal Discovery Network [4] | Encode-Process-Decode [3]




