
Learning the graph structure of interaction networks for

inference of complex object-centric and relational dynamics

Swapnil Pande, Saumya Saxena, Alvin Shek, Kevin Wang
{swapnilp, saumyas, ashek, kwang2}@andrew.cmu.edu

1 Introduction

Learned dynamics models have been extensively applied in planning and control for a wide variety of robotics tasks.
These models are useful because they allow us to model environment state transition dynamics simply from a dataset
of interactions, instead of manually programming a first-principles simulator, which can be very expensive and may
not accurately capture the true environment dynamics. Recently, there has been growing interest in parametrizing
dynamics models as graphical models, as this class of models naturally capture the dependencies in the behavior
of complex mechanical systems. The inductive biases that these graphical models provide have the potential to
reduce model size and improve generalization performance over the standard multi-layer perceptron. However, most
implementations have assumed that the graphical structure of the mechanical system is known a priori. While this
may be a safe assumption for very simple systems, this assumption does not hold for complex systems with many
links and actuators. Furthermore, it is possible that even for simple systems, a structure that captures all of the
relationships may not be evident a priori. For example, for a legged robot, we could näıvely describe links as nodes,
and add edges for every joint. However, we may find that due to the nature of the gaits that we could also add edges
between opposite legs, due to the dependencies imposed by the gait. Therefore, we aim to address the challenge of
learning the graph structure of a given dynamical system for the inference of the system’s dynamics.

We propose a new model that combines ideas from two different approaches: we combine the graph learning
architecture from [1] to learn the underlying graphical model of a system and the ”Encode-Process-Decode” architecture
presented in [2] as our forward model.

2 Dataset and Task

We consider the problem of learning the structure of a graphical model underlying the graph network architecture
presented in [2]. [2] uses predefined graphs to represent the dynamics of complex, dynamical systems such that nodes
represent objects and edges represent relations between pairs of objects. This network architecture is then used for
inference of object-centric and relational dynamic parameters from random excitation trajectories. In this work, our
task is to learn the underlying graph structure governing a dynamical system given these trajectories. In doing so,
we capture relationships and find interactions between the joints of an agent. Specifically, given a dynamical system
defined as a set of nodes N = {ni}Ni=1, we seek to learn the edge set E for a graph G = (N,E) that minimizes the
prediction error of the dynamics function st+1 = fd(st), where fd represents the forward dynamics prediction function.

We will be testing this approach on two MuJoCo simulation agents, Half Cheetah and Walker2D. Both of these
systems consists of multiple links connected at joints, so they are amenable to a graphical representation. We collect
the trajectories of a node/joint state and action for each MuJoCo agent over multiple timesteps as our input. We
will evaluate the performance of our method using the 1-step and 5-step rollout performance. For each expriment,
we quantitatively measure our results using the mean squared error between the true states and predicted states.
Furthermore, for the graph learning methods, we visualize our generated graphs to see the links between joints in a
MuJoCo agent to qualitatively measure the predicted graph structures.

3 Methods

3.1 Proposed method

Our method is briefly summarized in Fig. 1. Our learning architecture is composed of two main modules: the graph
inference module and the dynamics module. We use Causal Discovery Network (CDN) [1] as our graph inference
module that takes as input observed trajectories and outputs the graph structure. Specifically, it outputs the edge
set and the corresponding edge parameters. Our dynamics module, Encode-Process-Decode (EPD) [2], then takes as
input this graph structure and the current state and predicts the state at the next time step.

1

Observations

Graph inference
module

Summary Graph

Dynamics
module

Current state ot Predicted future state ot+1

Graph
inference
module
(CDN)

Dynamics
module

(Encode-
Process-
Decode)

For each time step - Spatial aggregation

o1
o2
⋮
oN

fc

Graph
network

n1
n2
⋮
nN

,
⋮
eij

⋮

Temporal aggregation
n1
⋮
nN t

…
n1
⋮
nN t+Δt

Linear
CNN

⋮
eij

⋮
t

…
⋮
eij

⋮
t+Δt

n̄1
⋮
n̄N

⋮
ēij

⋮
Linear
CNN

Graph
network

⋮
ed

ij

⋮
Graph

network

⋮
ec

ij

⋮
Sample

Edge type Edge
parameters

Learning edge type and edge parameters

Graph network (GN)

fn{ni}
{eij} fe

{n*i }

{e*ij }

Encode-Process-Decode (EPD)

{ni}
{eij}
{oi}t

{oi}t+1

(a)

(b)

(c)

Figure 1: (a) Learning architecture: Using observed trajectories the causal summary graph is inferred using the Inference
module. The dynamics of the system is simultaneously learned using the Dynamics module that operates on the identified
graph. (b) Inference module discovers the edge set and the associated parameters. First, we propagate information spatially
at each time step using a graph network which inputs a fully connected graph over all nodes. The output node and edge
embeddings are then aggregated temporally and fed into a 1D-CNN to output temporal aggregations which are again be passed
though another graph network that predicts a discrete distribution over edge types. Sampling from this distribution using the
Gumbel-Softmax technique and passing through another graph network then gives the continuous edge parameters. The edge
types and edge parameters together constitute the causal graph. (c) Dynamics module: The left half of this subplot shows the
graph network building block which acts as a single message passing step. The encoder encodes the node and edge parameters
and observations and feeds them to the processor which acts like a sequence of message passing steps with skip connections.
The output is then passed through the decoder which predicts the next state.

In particular, CDN first aggregates the state information spatially at every time step by feeding it to a graph
network (GN) (more details about GNs are provided in section 3.2) assuming a fully connected graph. The output
node and edge emdeddings for each time step are then aggregated temporally by feeding these embeddings over a
small time window to a linear CNN. These temporally aggregated embeddings are then fed to another graph network
that outputs a categorical distribution over the edge types where edge type can represent whether an edge is present
in the graph or not. We sample from this categorical distribution using the Gumbel-Softmax sampling technique (to
ensure differentiability) and feed it to another graph network that outputs the associated edge parameters.

The inferred edge types and parameters together constitute the graph structure which forms the input to our
dynamics module. EPD first encodes the state-based graph representation as a latent graph G0. This latent graph is
then processed via M message passing steps, by passing it though a sequence of multiple graph networks, to generate an
output latent graph GM . The decoder then finally converts the latent graph back to a state-based graph representation
which is the predicted next state. The whole model is trained end-to-end using the following objective function:

L = Epφ(Ẽ|s1:T)
[
logpψ(ŝt+1|st, Ẽ)

]
−DKL

(
pφ(Ẽ|s1:T)‖p(Ẽ)

)
where pφ is the edge prediction model, pψ is the dynamics model, and p(Ẽ) is a prior that encourages a sparse graph.

3.2 Baselines

Figure 2: Our baselines explore two main components
of our proposed method: The graph inference module and
the dynamics module

Our baselines are designed to explore the two main components
of our approach: the graph inference module and the dynam-
ics module. Our first three baselines assume that we know the
graph structure a priori, considering an edge at every physical
link in the system, and thus the inference module is not re-
quired. For these baselines we explore three types of dynamics
modules 1) MLP 2) Graph network 3) Encode-Process-Decode.

For baseline 1 we consider a multi-layer perceptron with
2 hidden layers as the forward model. For baseline 2, a graph
network module [3] is considered, which represents one iteration

2

of message passing similar to belief propagation Fig. 1 (c, left).
Given an graph with node and edge embeddings {ni} and {eij}, the GN module first updates each edge using its
neighboring nodes, e∗ij = fe(ni, nj , eij) where e∗j is the updated edge embedding and fe is a MLP. Once each edge is
updated, each node is also updated using the aggregated messages from all its incoming edges, n∗i = fn(ni,

∑
j eij)

where n∗i is the updated node embedding and fn is a MLP.
In baseline 4, we assume that the model is not known a priori and use the CDN architecture to learn the graph

structure (details provided in section 3.1) and use a single graph network (GN), which acts like a single message passing
step, as the forward model in the dynamics module.

4 Related Work

Our approach builds upon the interaction networks architecture explored in [2], [3], [4] and [5]. In our work we first
build upon the method presented in [2] because of its capability of making accurate long horizon predictions for very
large environments eg. Water-3D and Sand-3D. All of these approaches assume an existing graph of nodes and edges
and attempt to learn the features representing the nodes and edges. Here, the key joints and limbs of a model or object
are labeled as nodes, while the edges between these nodes are added based on intuition. However, a priori knowledge
of the graph is not always available or necessarily optimal for certain tasks. In this case, either the nodes, edges, or
both may be generated by a learned model, which is the focus of Deep Graph Generation (DGG). Given a dataset
of graphs from an underlying distribution p(G), these methods attempt to either explicitly model this distribution, or
learn to sample from this distribution [6]. [7] [8] sequentially generate new nodes or edges using LSTMs so that new
generations depend on previous ones along with the existing graph. [9] [10] take existing, locally-valid substructures of
nodes and edges, and builds a graph from these subgraphs, while other approaches generate the entire graph of nodes
and edges using Variational AutoEncoders (VAE) [11] [12]. In [13] and [14], edges are selected for a given set of nodes
in a scene graph using a Relation Proposal Network, which is optimized using the ground truth edges.

We also take inspiration from the method proposed in [15] as this method clearly relates to our task of learning
object-centric and relational dynamics parameters while using interaction networks as the base architecture. This
method proposes a Visual Causal Discovery Network (V-CDN), that takes as input visual representations of a scene at
various timesteps, converts them into relevant keypoints, and uses these keypoints to learn the graph architecture as
well as the forward model. In our task, keypoints/nodes are already known and do not need to be inferred from images.
We plan to adapt this graph learning method to the graph architecture presented in [2] and exploit the strength of
each these methods in terms of learning a more accurate graph representation for our data as well as ensuring accurate
long-horizon predictions.

5 Experiments

To evaluate the performance of our model, we train the baselines and our model to make forwards dynamics predictions
for two standard Mujoco simulator environments: Half-Cheetah and Walker2D. Our models are each optimized on
1-step predictions from a dataset containing a mix of data generated by a random policy and expert policy. We
additionally evaluate the performance of our model for 5-step rollouts, which are performed by inputting the predicted
state as the input at the next time step. The results from these experiments are presented in Figure 3. Finally, we
perform a qualitative analysis on the graph generated by the model to gain an intuitive understanding of the learned
relationships. We observe from Figure 3:a that the performance for both graph architectures for dynamics predictions
exceeds the performance of the MLP, indicating that the inductive biases that the graph architecture imposes on the
model are effective. However, we unexpectedly find that the GN model performs better than the EPD model.

Comparing plots 3:c, 3:d, 3:e, and 3:f, we notice three key trends. First, CDN-GN’s mean squared error is much
lower than the error of our proposed model. We believe this is true for several reasons explained at the end. Second,
CDN-GN in fact performs better than the other baselines on Walker 2D, showing that a learned graph can yield better
performance than a fixed graph. Lastly, comparing plots 3:e and 3:f (N-step prediction) with 3:c and 3:d (1-step
prediction), we also observe that N-step error is higher. In N-step prediction, the model feeds its own output back as
input N times, and initial errors propagate and will build up over time.

Figure 4 visualizes the learned edges (directed arrows) and a priori known nodes (circles) annotated on top of the
simulation models. Figure 4:a shows the output of our CDN-EPD model, which resembles an almost fully-connected
graph. This shows that the model was not able to identify the most meaningful edges, explaining the poor prediction
performance. However, figure 4:b shows the output of CDN-GN, which is more sparse with dense connections only
between nodes on the same leg. This matches our intuition since joints that are physically connected or spatially nearby
should have edges. Only a few edges are learned across the two legs, and this possibly represents the relationship
between the two legs in a gallop or walking motion since the legs follow a cyclic motion pattern. This shows the
promise of learning a graph to discover useful relationships rather than assuming fixed priors. Figures 4:c and 4:d
show similar trends.

3

Figure 3: (a), (b) Baselines 1,2,3 for the walker2D and half cheetah models: Assuming a known graph, comparison of
performance using 1-step dynamic prediction as metric using three dynamics modules - MLP, Graph Network and Encode-
Process-Decode (c), (d) Baseline 4 (CDN+GN) vs Proposed method (CDN+EPD): Comparison of performance using 1-step
dynamic prediction as metric (e), (f) Baseline 4 (CDN+GN) vs Proposed method (CDN+EPD): Comparison of performance
using 5-step dynamic prediction as metric

Figure 4: (a), (c) Learned graph structure for the walker2D and half cheetah
models using CDN+GN learning architecture. (b), (d) Learned graph struc-
ture for the walker2D and half cheetah models using CDN+EPD learning
architecture.

In all experiments, we find that the per-
formance of the EPD dynamics model is
worse than that of the GN model. We hy-
pothesize that this is a result of the additional
hyperparameters that the EPD model intro-
duced, which may not be tuned correctly.
Specifically, we believe that varying the num-
ber of message passing steps EPD performs
(currently performing 10), may have a signif-
icant influence on performance, as GN per-
forms better with a single step. Additionally,
the added complexity of the model may be
causing the joint optimization between the
graph inference network and the dynamics
prediction to settle into a local minimum, re-
sulting in the mostly fully-connected graphs
we see in Figures 4:c,d. A potential fix for
avoiding local optima could be pretraining
the dynamics model based on a heuristic a
priori graph.

6 Conclusion

We propose a method for learning a graphical structure to build a dynamics model for mechanical systems with
multiple links. We compare the performance of multiple models, and find that the CDN model combined with the
Graph Network dynamics model learns effective graph representations for the two systems and demonstrates low
prediction error. We also find that the EPD model performs worse than the GN model, both for a learned graph and
an a priori graph. In the future, we hope to study the effect of the number of message passing steps performed in the
EPD model on the model’s performance. To remediate the issue of local minima in the CDN+EPD model, we also
plan to try pretraining the dynamics model on a heuristic graph.

4

References

[1] Yunzhu Li, Antonio Torralba, Animashree Anandkumar, Dieter Fox, and Animesh Garg. Causal discovery in
physical systems from videos, 2020.

[2] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia. Learning
to simulate complex physics with graph networks. In International Conference on Machine Learning, pages 8459–
8468. PMLR, 2020.

[3] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia Hadsell,
and Peter Battaglia. Graph networks as learnable physics engines for inference and control. In International
Conference on Machine Learning, pages 4470–4479. PMLR, 2018.

[4] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu. Interaction net-
works for learning about objects, relations and physics, 2016.

[5] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive biases,
deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[6] Faezeh Faez, Yassaman Ommi, Mahdieh Soleymani Baghshah, and Hamid R. Rabiee. Deep graph generators: A
survey, 2020.

[7] Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional graph gener-
ative model, 2018.

[8] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models, 2018.

[9] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular graph
generation, 2019.

[10] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs using structural
motifs, 2020.

[11] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using variational
autoencoders, 2018.

[12] Daniel Flam-Shepherd, Tony Wu, and Alan Aspuru-Guzik. Graph deconvolutional generation, 2020.

[13] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn for scene graph generation,
2018.

[14] J. Zhang, M. Elhoseiny, S. Cohen, W. Chang, and A. Elgammal. Relationship proposal networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5226–5234, 2017.

[15] Yunzhu Li, Antonio Torralba, Animashree Anandkumar, Dieter Fox, and Animesh Garg. Causal discovery in
physical systems from videos supplementary material.

5

	Introduction
	Dataset and Task
	Methods
	Proposed method
	Baselines

	Related Work
	Experiments
	Conclusion

