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Summary: 
We implemented two versions of parallel SIFT algorithm, one using OpenMP and the 

other using Open MPI, to match similar localized features between two images. We also 
analyzed the difference in performance of using OpenMP and Open MPI to parallelize the code. 
The algorithm was run on the GHC machines (eight 3.2 GHz Intel Core i7 processors, NVIDIA 
GeForce GTX 1080 GPU).  
 

Background: 
The SIFT algorithm is a feature detection algorithm used to ​to detect and describe local 

features in images. It can be used to find matching features across multiple images to describe 
how similar the images are. 

Matching features across two images is a common task in many computer vision 
applications. For instance, everything from robots to the newest iPhone uses disparity estimation 
to generate depth images from 2D images, similar to how humans estimate depth through two 
eyes. This disparity estimation attempts to align two slight shifted images through feature 
matching. Motion capture and optical flow similarly attempt to match two images and identify 
the overall displacement between these matching parts of image.  

 
Key data structures in this algorithm are:  

1.  Image data structure which is a 2D array with data values specifying how black/white 
each pixel is. We created our own Image() class with various C++ operators (copy, 
assignment, instantiation, and most importantly subtraction) to allow us to store images 
and perform high-level subtractions between them. We also created interface functions to 
store data into OpenCV data structures (cv::Mat) to take advantage of their existing 
write-to-file and display functionality. 

2. Various arrays and vectors that are used in the intermediary steps of the algorithm such as 
storing keypoints 

3. We created various C++ classes that implement each of these major steps using smaller 
helper functions with public and private data. For instance, our LoG class allows the user 
to call a high-level ​find_LoG_images()​ that performs all intermediate steps like blurring 
and shrinking.  

 
 

At a high level, SIFT takes in a single image and outputs the same image with feature 
points marked on top of them. The algorithm can be broken down into a few steps: 

 
1. Shrinking images to allow image matching to be scale-invariant. 
2. Blurring the images through convolution to smooth out noise. 
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3. Finding the LoG(Laplacian of Gaussian) approximations to calculate gradients in the x 
and y-direction. 

4. Use the gradients to find keypoints, which are designed to find features that are 
“corner-like”.  

5. Find orientation of keypoints and apply inverse rotation. This explains why SIFT is 
invariant to rotations. 

6. Generating and distinguishing features using keypoints from each image and match said 
features. 

 
 

 
Figure 1. An example of the end product of the SIFT Algorithm, marking the relevant key points 
of an image. 
 
 

Approach: 
We parallelized the SIFT algorithm with both OpenMP and MPI by parallelizing the first 

three steps in the algorithm: convolution, the LoG approximations that call convolution multiple 
times,  and finding of the keypoints. We chose to focus on parallelizing these two steps as we 
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noticed that with the initial sequential implementation, a vast majority of the time was spent on 
these three steps as seen below: 

 

                  
 Figure 2. Output of timed sections of the algorithm.  

 
Sequential Algorithm: 

We chose to make our SIFT algorithm from scratch as we wanted the option to inject 
parallelism of every step of the algorithm. Although we completed the algorithm and could 
generate relevant features of images, our implementation was not good that mapping out 
similarities between two different images. However, as this project is for a parallel computations 
and architecture class and not a computer vision class, we proceeded to make do and focus on the 
speedup of our algorithm.  

Our benchmark test was of our sequential SIFT algorithm ran twice on the same image, 
which correctly mapped the features of one image to the same feature of the other image. Our 
benchmark  

In order to pinpoint which functions that need to be optimized, we used the execution 
time of all the intermediary steps of the sequential algorithm that was shown previously. With 
this insight, we see that most of our focus would need to go towards the blurring/convolution 
function as that takes up majority of the execution time of the program. 
 
 
Open MPI:  

Diving into the specifics, we first parallelized image shrinking. When an image is shrunk 
in half, the total number of pixels is divided by 4. Each pixel of the shrunk image is an average 
of four pixels from the original size image. This is shown in the example below:  
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   Figure 3. Example image of how scaling works. 

 
We applied data parallelism to parallelize the shrinking operation for three scales: half, 

quarter, and eighth versions of the original image all in one clean function call by the user, 
perform_shrinks(half, quarter, eighth)​. We allo​cated work in ​allocate_shrink_work_mpi() ​by 
calculating the total number of pixels for a downsized image and assigning an even number of 
pixels to each task. The processes would scale up these downsized indexes to access the original 
size image pixels. If there are M pixels and N tasks, process one would handle pixels [0, M/N - 
1], process two would handle pixels [M/N, 2*M/N-1], and so on. Only the last thread would 
receive the remainder. Processes need to generate these assignments themselves since they need 
to know the index range of other processes’ work to properly store their shared results. Of 
course, every MPI application requires developers to not only manually assign work to each 
process, but also handle message passing. Since each process needed a copy of all three shrinked 
images, each process would scatter its results to all other processes and gather all other 
processes’ results.  

We wrote helper functions to handle these two operations: ​send_to_others()​ and 
receive_from_others()​, which loop through each process(besides itself) and perform non-blocking send 
and receive respectively. This use of non-blocking message passing calls for some synchronization, which 
is why we wrote a separate ​mpi_barrier() ​function that loops through each process and calls ​MPI_Wait(). 
Since a process shouldn’t send and receive results from itself, the index of our MPI_Request* array 
corresponding to this entry would be undefined, causing segfaults when using ​MPI_Waitall()​. Separating 
synchronization also allowed us to make parts of our program task-parallel.  

Our original sequential shrink function was modified heavily to perform any scale of shrinking 
rather than multiple calls to shrink_half. To handle contiguous pixel assignment, we break down our 
nested for-loops over rows and columns into just pixel index. We created our own range typedef as a pair 
of integers to map the start and end of a process’s index assignment.  

Our next step at parallelizing was the Gaussian blur convolution. A blur convolution  
involves taking the weighted average of a pixel’s neighbors including that pixel and storing the 
result into that pixel. Since a Gaussian distribution is continuous, the probabilities on the 
distribution never quite reach zero, but we discretize this as a binomial distribution so we can use 
a finite-sized N x N kernel for convolution. Our GaussianBlur class converts variances used in 
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gaussian distributions to generate binomial distributions using Pascal’s triangle, and with this we 
can perform approximate blurring where the weight of all pixels must sum to one to not lose 
brightness of pixels. 

 
Figure 4. Description of a binomial distribution in estimating gaussian distribution. 

 
From the above description, a naive implementation would be to loop through all pixels 

in a kernel, but this takes O(M^2) for an M x M kernel. Rather, convolution can be separated into 
two separate one-dimensional convolutions for overall O(2M) computation. Our implementation 
performs vertical convolution first, and uses this to compute horizontal convolution. We 
parallized this by assigning dividing up rows and columns of an image to each process. The 
following summarizes the work done by each process: 

1. Vertical convolution for assigned rows 
2. Non-blocking send results 
3. Non-blocking receive other processes’ results 
4. Barrier ensuring all results are received 
5. Horizontal convolution for assigned columns 
6. Non-blocking send and receive 
7. Barrier 

 
 

The next step was to parallelize finding keypoints. Keypoints are crucial to comparing 
images: intuitively, we as humans compare entire objects in images, but SIFT compares specific 
pixels and some information about their surroundings.  

The first step of keypoint-finding is to check whether a given pixel is an extrema. SIFT 
performs this check not only for a pixel’s neighbors, but neighbors of other images(which are 
different blurred versions). The same data-parallelism as image shrinking is applied here, where 
processes are assigned a certain range of pixels to perform this extrema check. In fact, our 
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function to allocate work, ​allocate_work_pix_mpi()​, is basically repeated three times for the shrinking 
work allocation. Our high-level send and receive helper functions make this parallelization easy.  

While parallelizing another part, we realized that extrema finding has low arithmetic intensity: 
one simple inequality check per memory access. We thought we could speed up the gradient calculation 
process by combining this with the extrema-finding section by storing the accessed pixel values into local 
variables and using them for gradient and magnitude calculation. The below series of “get” operations 
demonstrates this low arithmetic intensity.  

 
Figure 5. Spinnet from the ​get_maxes​ function 

 
However, we realized that this optimization doesn’t work because the gradient 

calculation step uses the results of the extrema-finding step, which masks out pixels that aren’t 
extrema. Overall, we stuck with the more simple idea of keeping gradient-finding separate. This 
step finds the gradient at each pixel and its corresponding magnitude, which are stored in arrays 
of the same size as the image. The same data-parallelism is performed here as shrinking.  

One challenging part, however, was to perform sharing of keypoints. Keypoints are 
stored if both their horizontal and vertical gradients exceed a threshold, and thus the number of 
keypoints and overall amount of data shared between processes cannot be calculated beforehand. 
To solve this, we statically allocate an array of same size as image, but in each location store a 
keypoint’s 1-D index. An example array is shown below.  

 
Figure 6.  
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With this strategy, static allocation of space to store keypoints can still be done. Not all space 
will be used, and a process can use the MPI_Get_count() function to actually check how many 
keypoints were sent by a process.  
 
Overall, the last steps of keypoint orientation assignment involved the same data-parallelism 
approach. Overall, not much task-parallelism was achievable since one step would depend on the 
results of previous steps. Data parallelism was the natural approach to take since all pixels 
typically have the same operations performed on them. MPI overall had some nuances that we 
got around using some quick fixes. For instance, messages to the same recipient should have 
unique ids so they don’t get mixed up, and this would happen in gradient, magnitude, and 
keypoint value-sharing. We fixed this with a simple enum to create three unique ids, one for each 
data group.  

We had some attempts not mentioned above where we tried to parallelize memory loads 
and operations, but these ideas didn’t work because overall produced minimal to worse speedup. 
First, a horizontal convolution has high cache efficiency, but a vertical has the opposite for 
row-major traversal of pixels. As we traverse across the columns in a row, we access completely 
new rows, some of which may be loaded into cache, but still be cold misses when reaching the 
same column of the next row. The image below shows this problem: 

 
Figure 7. Vertical convolutions with row-major traversal has low cache efficiency. 

 
To solve this, we tried a hacky approach where processes would be assigned entire columns 
rather than rows, and thus need to traverse across the rows for a single column. This sounds like 
bad cache performance, but when loading a block of data around a pixel into cache, we get the 
same cache reuse as when traversing horizontally and doing horizontal convolutions. We stored 
these results in a “flipped” array, where an index = column * rows_per_column + row. This way, 
storage of these results into an array has better cache efficiency in accessing contiguous memory. 
However, this approach ended up having many tricky indexing bugs especially in sending data 
between processes, and we ended up getting worse performance.  
 
Even though we have better cache hit efficiency when storing values into a flipped array, we 
eventually need to store them into a correct row-major image. Here, we are left with the dilemma 
of whether to load row-major and store column-major or do the reverse, and both ways have the 
same issue of either loading or storage having bad performance. We also ultimately realized that 
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even if we can reuse the values of adjacent pixels, we need to constantly write them to new 
variables since each convolution will scale those pixels with different weights.  
 
 
OpenMP:  

There are some OpenMP specific changes that had to be made. First, for OpenMP, we 
tried using the​ #pragma omp parallel for​ construct to parallelize the for various loops of the 
algorithm. This meant that in order to get the best parallelization possible, we needed to use loop 
unrolling to ensure that the OpenMP construct could parallelize the biggest loop it possibly can. 
Loop unrolling was necessary as parallelizing at the higher levels of the algorithm and function 
calls took higher priority than trying to inject parallelism on the lower ends. So we loop unrolled 
all of the functions that stood to benefit from having the annotation. 

Second, we could inject some task-parallelism by calling some of the functions with the 
#pragma omp parallel … single … task  ​or  ​#pragma omp parallel … sections​ annotations so that 
different threads can work on certain functions in parallel. Using annotations that injected 
task-parallelism was used on the higher-level functions.  

Third, the LoG step required the usage of local vectors to store the x and y-gradients 
across pixels per convolution call, which could not be used if the convolution was broken up into 
multiple sections and used by several smaller convolution functions. So we had to create another 
shared vector called ​temp_temp ​that could serve as a temporary vector between all the different 
convolution sections. This shared vector was important because along the border of each 
convolution section, the x and y-gradients could not be accurately calculated if one convolution 
section did not have access to the calculation done on the edge of another convolution section. 
These convolution sections would then be called using the ​#pragma omp parallel … single … 
task ​annotation so that only a single thread would be able to work on a convolution section.  

Fourth, we tried out several memory load methods such as loading blocks of image 
memory at a time to reduce cache misses but could not get that to work correctly by the deadline 
so we decided to drop it like we did for MPI. 

For OpenMP, we followed a similar structure of making separate functions for shrinking 
instead of calling the shrink_half function multiple times on previous shrink_half outcomes. 
These ​shrink_half​,​ shrink_quarter​,​ ​and​ shrink_eighths ​would be called parallel to each other, but 
in series with the ​create_blur​ function per scaled-down versions of the images by grouping the 
shrink and blur functions with ​#pragma omp section​. This ensured that each call to ​create_blur 
would not be hindered by calls of other shrink functions that the one it needed.  

We also parallelized the convolution section by dividing up the workload of convolving 
an entire image into separate sections so that we can inject data-parallelism into the algorithm. 
We tried out different numbers of convolution sections to divide into so because cost of 
OpenMP’s overhead of launching more threads to perform smaller convolutions in parallel vs. 
the performance gain from having those parallel convolutions were unknown. The net gain 
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would need to be tested. Within these convolution sections, we also tried injecting ​#pragma omp 
parallel for​ annotations to see if the loops inside after unrolling them, which would have yielded 
speedup.  
 
 
Results: 

We set out to achieve at least 3x speed-up for both OpenMP and MPI implementations. 
However, we could only achieve this goal for the MPI version for certain functions with certain 
image sizes. The speed-up was measured by comparing the overall execution time (the time 
taken to run the SIFT algorithm on both images and the image comparison) of the sequential 
version to the two types of parallel algorithms.  

 
 

OpenMP: 
 
This is the average runtime of the code over 10 runs with different number of convolution 
sections: 
(Note: This table shows the differences of execution using different number of convolution 
sections after all other forms of parallelisms have been applied such as using “omp tasks” to run 
the blurring algorithms that use convolution in parallel. This means that the # of convolution 
sections correspond to the number of threads used for that run.) 
 

#of Convolution 
Sections 

LoG process 
Execution time (ms) 

Total Execution time Speedup 

1 2300 3001 1x 

2 2022 2540 1.18x 

4 2190 2752 1.09x 

8 2532 2904 1.03x 
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Using this table, we can see that the best speedup using OpenMP to create multiple sections of 
convolution is actually achieved by creating only two sections.  
 

The speedup was also measured across different images of different sizes to see if the 
speedup of an implementation was depended on the image size 
(Note: This table shows the differences of execution time of images of different sizes with the 
fully parallelized OpenMP algorithm using two convolution sections, using omp sections on 
blurring, and using omp parallel for to find keypoints.) 
 

Image Size Sequential Total 
Execution time (ms) 

Parallel Total 
Execution time 
(ms) 

Speedup 

700 x 700  3160 2540 1.24x 

1396 × 1414 12469 10567 1.17x 

1000 x 800 6431 5407 1.18x 

 
As seen here, there were no significant differences in speedup when using different images, so 
the image size had no impact on the speedup. 
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Here is the final time division of execution time 

 
Figure 8. Break down of the execution time of the final OpenMP implementation 

 
The figure above shows that most of the speedup was from the LoG process by the 

parallel convolutions, with some contributions from the ​find_keypoint​ function. It still stands to 
show that there is much desired speedup of the LoG processes as the difference from sequential 
to parallel is still very small. More than 80% of the execution time is still being spent on the LoG 
processes. The other parts of the algorithm are not in need of much parallelization as 
parallelizing those values  would only yield very small increases in performance. 
 

There is a lot left unfulfilled by our OpenMP implementation, allowing us to reflect on 
what went wrong and what is hindering speedup. Here are several factors that limited our 
speedup with OpenMP: 
 

1. Too much overhead. 
Ahmdahl’s law explains that the maximum speedup that we can get is determined by not 

only how much a program can be parallelized, but by the sequential portion of the program that 
cannot be parallelized. This means that our speedup is bound by the slowest part of the program 
and in our case that is for the convolution section. More specifically, the speedup is bounded by 
the execution time of the convolution done to the original image, which is four times bigger than 
the second biggest image that has convolution done to it which is the half-scaled image. So the 
strategy of breaking up the convolution of the original into several different sections was 
necessary, but the actual result says otherwise. By breaking up the convolution into several 
sections, the program’s overhead of launching more threads to convolve those sections increases, 
diminishing the amount of speedup that is possible. Even though there is no synchronization 
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required as each thread would be editing different sections of a shared data structure, the 
overhead from launching several threads into doing the convolution limit the speedup and even 
cause a decrease in performance. This is evident on our experiment with using different number 
of convolution sections, which correspond to the number of threads being used. The more we 
increased the number of sections, the worse our speedup became. 
 

2. Cache misses 
Through the use of “perf”, a performance measuring tool, we learned that our OpenMP 

program has around 13% of all cache assess being cache misses on average. This did not bode 
well for the section algorithm that relied heavily on its memory accesses and in the end became a 
bottleneck for the speedup. 

 
Figure 9. Output of a pref examining cache references and cache misses  

 
3. Memory Traffic 

 
We also used perf to determine how much the bus was being used. Here are the results: 

 

Sequential: OpenMP: 

  

 
As seen here, the sequential implementation around half the bus cycles than the OpenMP 
version, which implies that it has half the amount of bus traffic than the OpenMP version. This 
could explain the poor performance as the amount of bus cycles indicate that the memory traffic 
is also a bottleneck. The more traffic on the bus, the need for memory coherency traffic also 
increases between cores. While the CPU used in GHC machines uses a large inclusive shared L3 

13 



 

cache that filters coherency traffic between cores, having double the amount of memory traffic 
would have a severe hit to the performance of the OpenMP version.  
 

4. Sequential Nature 
Throughout the algorithm, there exists sections of code that are sequential by nature. For 

example, all the steps 3-5 of SIFT are all sequential because they rely on the output of the 
previous step to generate their outcomes. In the ​find_corners_gradients, 
find_keypoint_orientations, store_features, store_keypoints ​functions in the file that deals with 
finding keypoints and generating features out of them, all of those functions needed to have 
specific ordering in which they are called, eliminating the possibility of using ​#pragma omp 
parallel task ​ or ​#pragma omp parallel sections​. Even further, these functions needed to have the 
arrays/vectors they edit in their for loops be in a specific order to keep correctness from 
sequential to parallel, eliminating the possibility of using ​#pragma omp parallel for​ as well.  
 
 
 
Open MPI: 
 
Overall, we achieved our target 3x speedup for certain functions with certain image sizes.  

 
The above chart shows speedup of various functions compared to the sequential version(single 

CPU) as a function of number of parallel processes. The magnitude and gradient calculation 
function achieved high speedup whereas other functions like find finding keypoints actually 

performed worse. 
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Speedup also varied with image size as the amount of work per thread increased.  
For example, here are the speedups (relative to sequential) of the blur convolution function when 
run on different sized images of the same image: 
 

Image Size Convolution Blur Speedup 

Full 2.16 

Half 2.09 

Quarter 2.07 

Eighth 1.94 

 
As you can see above, while minor, blur speedup still decreases as image size decreases. This is 
caused by the decrease work per thread and thus time savings as the ratio of work to setup 
overhead decreases. Such overhead includes assigning all the work to other tasks as well as the 
communication overhead of sharing results between tasks.  
 
The communication overhead becomes clear when we compare speedup to number of processes. 
Much of the functions we parallelized had a low arithmetic intensity: simply comparing pixel 
values and performing simple subtraction operations. Due to the high overhead of 
communication, even with non-blocking, our program could only gain speedup with number of 
processes until a certain point, as shown in the graph below: 

 
Here above, we can see that speedup increases quickly initially from one to two processes, but starts to 
slow in growth with number of processes. Eventually, at six processes, speedup is maximized before 

speedup suddenly drops at seven and eight threads.  
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Also looking at our first graph of speedup for various functions, we noticed that our parallel 
implementation of keypoint finding actually performed worse than the sequential by around 
50%. This is disappointing since this was one of our minor attempts at task and data parallelism 
where we perform extrema finding between two sets of three images. We allow the processes to 
immediately start on the next extrema finding after performing non-blocking send and receive of 
the previous set’s results. We speculate that this is caused by the low arithmetic intensity as we 
are only performing an inequality check for every memory load of a pixel from an image. With 
the memory overhead of assigning work, the parallel version would overall perform worse.  
 
We also used perf to examine the memory traffic of our MPI version as well, and in this case 
realized that there was a high communication overhead. But compared to the OpenMP version, 
the bus communication is part of using a Message Passing Interface. While we do not have what 
constitutes a “good amount of communication through the bus” that indicates efficient bus traffic 
amount, we feel that having six times the amount of bus traffic is not a good sign and definitely 
has a lot of unnecessary information movement.  
 

 
 
 
 
Overall: 

Comparing the two different methods we used to parallelize the code, we much prefer 
using Open MPI than OpenMP. This is because OpenMP felt like a black box that we put our 
code into, hoping to get some amount of speedup without much of an explanation as to why 
certain techniques failed to achieve the results that we wanted. Open MPI yielded much more 
consistent results and lead to better iterative progress between implementing types of parallelism 
of the functions. The ability to inject parallelism through pointers and messages made for better 
control over our code that OpenMP could not offer.  
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