

Analysis of OpenMP and Open MPI
Parallelism on the SIFT Algorithm

By Alvin Shek and Hojun Byun

1

Summary:
We implemented two versions of parallel SIFT algorithm, one using OpenMP and the

other using Open MPI, to match similar localized features between two images. We also
analyzed the difference in performance of using OpenMP and Open MPI to parallelize the code.
The algorithm was run on the GHC machines (eight 3.2 GHz Intel Core i7 processors, NVIDIA
GeForce GTX 1080 GPU).

Background:
The SIFT algorithm is a feature detection algorithm used to to detect and describe local

features in images. It can be used to find matching features across multiple images to describe
how similar the images are.

Matching features across two images is a common task in many computer vision
applications. For instance, everything from robots to the newest iPhone uses disparity estimation
to generate depth images from 2D images, similar to how humans estimate depth through two
eyes. This disparity estimation attempts to align two slight shifted images through feature
matching. Motion capture and optical flow similarly attempt to match two images and identify
the overall displacement between these matching parts of image.

Key data structures in this algorithm are:

1. Image data structure which is a 2D array with data values specifying how black/white
each pixel is. We created our own Image() class with various C++ operators (copy,
assignment, instantiation, and most importantly subtraction) to allow us to store images
and perform high-level subtractions between them. We also created interface functions to
store data into OpenCV data structures (cv::Mat) to take advantage of their existing
write-to-file and display functionality.

2. Various arrays and vectors that are used in the intermediary steps of the algorithm such as
storing keypoints

3. We created various C++ classes that implement each of these major steps using smaller
helper functions with public and private data. For instance, our LoG class allows the user
to call a high-level find_LoG_images() that performs all intermediate steps like blurring
and shrinking.

At a high level, SIFT takes in a single image and outputs the same image with feature
points marked on top of them. The algorithm can be broken down into a few steps:

1. Shrinking images to allow image matching to be scale-invariant.
2. Blurring the images through convolution to smooth out noise.

2

3. Finding the LoG(Laplacian of Gaussian) approximations to calculate gradients in the x
and y-direction.

4. Use the gradients to find keypoints, which are designed to find features that are
“corner-like”.

5. Find orientation of keypoints and apply inverse rotation. This explains why SIFT is
invariant to rotations.

6. Generating and distinguishing features using keypoints from each image and match said
features.

Figure 1. An example of the end product of the SIFT Algorithm, marking the relevant key points
of an image.

Approach:
We parallelized the SIFT algorithm with both OpenMP and MPI by parallelizing the first

three steps in the algorithm: convolution, the LoG approximations that call convolution multiple
times, and finding of the keypoints. We chose to focus on parallelizing these two steps as we

3

noticed that with the initial sequential implementation, a vast majority of the time was spent on
these three steps as seen below:

 Figure 2. Output of timed sections of the algorithm.

Sequential Algorithm:

We chose to make our SIFT algorithm from scratch as we wanted the option to inject
parallelism of every step of the algorithm. Although we completed the algorithm and could
generate relevant features of images, our implementation was not good that mapping out
similarities between two different images. However, as this project is for a parallel computations
and architecture class and not a computer vision class, we proceeded to make do and focus on the
speedup of our algorithm.

Our benchmark test was of our sequential SIFT algorithm ran twice on the same image,
which correctly mapped the features of one image to the same feature of the other image. Our
benchmark

In order to pinpoint which functions that need to be optimized, we used the execution
time of all the intermediary steps of the sequential algorithm that was shown previously. With
this insight, we see that most of our focus would need to go towards the blurring/convolution
function as that takes up majority of the execution time of the program.

Open MPI:

Diving into the specifics, we first parallelized image shrinking. When an image is shrunk
in half, the total number of pixels is divided by 4. Each pixel of the shrunk image is an average
of four pixels from the original size image. This is shown in the example below:

4

 Figure 3. Example image of how scaling works.

We applied data parallelism to parallelize the shrinking operation for three scales: half,

quarter, and eighth versions of the original image all in one clean function call by the user,
perform_shrinks(half, quarter, eighth). We allocated work in allocate_shrink_work_mpi() by
calculating the total number of pixels for a downsized image and assigning an even number of
pixels to each task. The processes would scale up these downsized indexes to access the original
size image pixels. If there are M pixels and N tasks, process one would handle pixels [0, M/N -
1], process two would handle pixels [M/N, 2*M/N-1], and so on. Only the last thread would
receive the remainder. Processes need to generate these assignments themselves since they need
to know the index range of other processes’ work to properly store their shared results. Of
course, every MPI application requires developers to not only manually assign work to each
process, but also handle message passing. Since each process needed a copy of all three shrinked
images, each process would scatter its results to all other processes and gather all other
processes’ results.

We wrote helper functions to handle these two operations: send_to_others() and
receive_from_others(), which loop through each process(besides itself) and perform non-blocking send
and receive respectively. This use of non-blocking message passing calls for some synchronization, which
is why we wrote a separate mpi_barrier() function that loops through each process and calls MPI_Wait().
Since a process shouldn’t send and receive results from itself, the index of our MPI_Request* array
corresponding to this entry would be undefined, causing segfaults when using MPI_Waitall(). Separating
synchronization also allowed us to make parts of our program task-parallel.

Our original sequential shrink function was modified heavily to perform any scale of shrinking
rather than multiple calls to shrink_half. To handle contiguous pixel assignment, we break down our
nested for-loops over rows and columns into just pixel index. We created our own range typedef as a pair
of integers to map the start and end of a process’s index assignment.

Our next step at parallelizing was the Gaussian blur convolution. A blur convolution
involves taking the weighted average of a pixel’s neighbors including that pixel and storing the
result into that pixel. Since a Gaussian distribution is continuous, the probabilities on the
distribution never quite reach zero, but we discretize this as a binomial distribution so we can use
a finite-sized N x N kernel for convolution. Our GaussianBlur class converts variances used in

5

gaussian distributions to generate binomial distributions using Pascal’s triangle, and with this we
can perform approximate blurring where the weight of all pixels must sum to one to not lose
brightness of pixels.

Figure 4. Description of a binomial distribution in estimating gaussian distribution.

From the above description, a naive implementation would be to loop through all pixels

in a kernel, but this takes O(M^2) for an M x M kernel. Rather, convolution can be separated into
two separate one-dimensional convolutions for overall O(2M) computation. Our implementation
performs vertical convolution first, and uses this to compute horizontal convolution. We
parallized this by assigning dividing up rows and columns of an image to each process. The
following summarizes the work done by each process:

1. Vertical convolution for assigned rows
2. Non-blocking send results
3. Non-blocking receive other processes’ results
4. Barrier ensuring all results are received
5. Horizontal convolution for assigned columns
6. Non-blocking send and receive
7. Barrier

The next step was to parallelize finding keypoints. Keypoints are crucial to comparing
images: intuitively, we as humans compare entire objects in images, but SIFT compares specific
pixels and some information about their surroundings.

The first step of keypoint-finding is to check whether a given pixel is an extrema. SIFT
performs this check not only for a pixel’s neighbors, but neighbors of other images(which are
different blurred versions). The same data-parallelism as image shrinking is applied here, where
processes are assigned a certain range of pixels to perform this extrema check. In fact, our

6

function to allocate work, allocate_work_pix_mpi(), is basically repeated three times for the shrinking
work allocation. Our high-level send and receive helper functions make this parallelization easy.

While parallelizing another part, we realized that extrema finding has low arithmetic intensity:
one simple inequality check per memory access. We thought we could speed up the gradient calculation
process by combining this with the extrema-finding section by storing the accessed pixel values into local
variables and using them for gradient and magnitude calculation. The below series of “get” operations
demonstrates this low arithmetic intensity.

Figure 5. Spinnet from the get_maxes function

However, we realized that this optimization doesn’t work because the gradient

calculation step uses the results of the extrema-finding step, which masks out pixels that aren’t
extrema. Overall, we stuck with the more simple idea of keeping gradient-finding separate. This
step finds the gradient at each pixel and its corresponding magnitude, which are stored in arrays
of the same size as the image. The same data-parallelism is performed here as shrinking.

One challenging part, however, was to perform sharing of keypoints. Keypoints are
stored if both their horizontal and vertical gradients exceed a threshold, and thus the number of
keypoints and overall amount of data shared between processes cannot be calculated beforehand.
To solve this, we statically allocate an array of same size as image, but in each location store a
keypoint’s 1-D index. An example array is shown below.

Figure 6.

7

With this strategy, static allocation of space to store keypoints can still be done. Not all space
will be used, and a process can use the MPI_Get_count() function to actually check how many
keypoints were sent by a process.

Overall, the last steps of keypoint orientation assignment involved the same data-parallelism
approach. Overall, not much task-parallelism was achievable since one step would depend on the
results of previous steps. Data parallelism was the natural approach to take since all pixels
typically have the same operations performed on them. MPI overall had some nuances that we
got around using some quick fixes. For instance, messages to the same recipient should have
unique ids so they don’t get mixed up, and this would happen in gradient, magnitude, and
keypoint value-sharing. We fixed this with a simple enum to create three unique ids, one for each
data group.

We had some attempts not mentioned above where we tried to parallelize memory loads
and operations, but these ideas didn’t work because overall produced minimal to worse speedup.
First, a horizontal convolution has high cache efficiency, but a vertical has the opposite for
row-major traversal of pixels. As we traverse across the columns in a row, we access completely
new rows, some of which may be loaded into cache, but still be cold misses when reaching the
same column of the next row. The image below shows this problem:

Figure 7. Vertical convolutions with row-major traversal has low cache efficiency.

To solve this, we tried a hacky approach where processes would be assigned entire columns
rather than rows, and thus need to traverse across the rows for a single column. This sounds like
bad cache performance, but when loading a block of data around a pixel into cache, we get the
same cache reuse as when traversing horizontally and doing horizontal convolutions. We stored
these results in a “flipped” array, where an index = column * rows_per_column + row. This way,
storage of these results into an array has better cache efficiency in accessing contiguous memory.
However, this approach ended up having many tricky indexing bugs especially in sending data
between processes, and we ended up getting worse performance.

Even though we have better cache hit efficiency when storing values into a flipped array, we
eventually need to store them into a correct row-major image. Here, we are left with the dilemma
of whether to load row-major and store column-major or do the reverse, and both ways have the
same issue of either loading or storage having bad performance. We also ultimately realized that

8

even if we can reuse the values of adjacent pixels, we need to constantly write them to new
variables since each convolution will scale those pixels with different weights.

OpenMP:

There are some OpenMP specific changes that had to be made. First, for OpenMP, we
tried using the #pragma omp parallel for construct to parallelize the for various loops of the
algorithm. This meant that in order to get the best parallelization possible, we needed to use loop
unrolling to ensure that the OpenMP construct could parallelize the biggest loop it possibly can.
Loop unrolling was necessary as parallelizing at the higher levels of the algorithm and function
calls took higher priority than trying to inject parallelism on the lower ends. So we loop unrolled
all of the functions that stood to benefit from having the annotation.

Second, we could inject some task-parallelism by calling some of the functions with the
#pragma omp parallel … single … task or #pragma omp parallel … sections annotations so that
different threads can work on certain functions in parallel. Using annotations that injected
task-parallelism was used on the higher-level functions.

Third, the LoG step required the usage of local vectors to store the x and y-gradients
across pixels per convolution call, which could not be used if the convolution was broken up into
multiple sections and used by several smaller convolution functions. So we had to create another
shared vector called temp_temp that could serve as a temporary vector between all the different
convolution sections. This shared vector was important because along the border of each
convolution section, the x and y-gradients could not be accurately calculated if one convolution
section did not have access to the calculation done on the edge of another convolution section.
These convolution sections would then be called using the #pragma omp parallel … single …
task annotation so that only a single thread would be able to work on a convolution section.

Fourth, we tried out several memory load methods such as loading blocks of image
memory at a time to reduce cache misses but could not get that to work correctly by the deadline
so we decided to drop it like we did for MPI.

For OpenMP, we followed a similar structure of making separate functions for shrinking
instead of calling the shrink_half function multiple times on previous shrink_half outcomes.
These shrink_half, shrink_quarter, and shrink_eighths would be called parallel to each other, but
in series with the create_blur function per scaled-down versions of the images by grouping the
shrink and blur functions with #pragma omp section. This ensured that each call to create_blur
would not be hindered by calls of other shrink functions that the one it needed.

We also parallelized the convolution section by dividing up the workload of convolving
an entire image into separate sections so that we can inject data-parallelism into the algorithm.
We tried out different numbers of convolution sections to divide into so because cost of
OpenMP’s overhead of launching more threads to perform smaller convolutions in parallel vs.
the performance gain from having those parallel convolutions were unknown. The net gain

9

would need to be tested. Within these convolution sections, we also tried injecting #pragma omp
parallel for annotations to see if the loops inside after unrolling them, which would have yielded
speedup.

Results:

We set out to achieve at least 3x speed-up for both OpenMP and MPI implementations.
However, we could only achieve this goal for the MPI version for certain functions with certain
image sizes. The speed-up was measured by comparing the overall execution time (the time
taken to run the SIFT algorithm on both images and the image comparison) of the sequential
version to the two types of parallel algorithms.

OpenMP:

This is the average runtime of the code over 10 runs with different number of convolution
sections:
(Note: This table shows the differences of execution using different number of convolution
sections after all other forms of parallelisms have been applied such as using “omp tasks” to run
the blurring algorithms that use convolution in parallel. This means that the # of convolution
sections correspond to the number of threads used for that run.)

#of Convolution
Sections

LoG process
Execution time (ms)

Total Execution time Speedup

1 2300 3001 1x

2 2022 2540 1.18x

4 2190 2752 1.09x

8 2532 2904 1.03x

10

Using this table, we can see that the best speedup using OpenMP to create multiple sections of
convolution is actually achieved by creating only two sections.

The speedup was also measured across different images of different sizes to see if the
speedup of an implementation was depended on the image size
(Note: This table shows the differences of execution time of images of different sizes with the
fully parallelized OpenMP algorithm using two convolution sections, using omp sections on
blurring, and using omp parallel for to find keypoints.)

Image Size Sequential Total
Execution time (ms)

Parallel Total
Execution time
(ms)

Speedup

700 x 700 3160 2540 1.24x

1396 × 1414 12469 10567 1.17x

1000 x 800 6431 5407 1.18x

As seen here, there were no significant differences in speedup when using different images, so
the image size had no impact on the speedup.

11

Here is the final time division of execution time

Figure 8. Break down of the execution time of the final OpenMP implementation

The figure above shows that most of the speedup was from the LoG process by the

parallel convolutions, with some contributions from the find_keypoint function. It still stands to
show that there is much desired speedup of the LoG processes as the difference from sequential
to parallel is still very small. More than 80% of the execution time is still being spent on the LoG
processes. The other parts of the algorithm are not in need of much parallelization as
parallelizing those values would only yield very small increases in performance.

There is a lot left unfulfilled by our OpenMP implementation, allowing us to reflect on
what went wrong and what is hindering speedup. Here are several factors that limited our
speedup with OpenMP:

1. Too much overhead.
Ahmdahl’s law explains that the maximum speedup that we can get is determined by not

only how much a program can be parallelized, but by the sequential portion of the program that
cannot be parallelized. This means that our speedup is bound by the slowest part of the program
and in our case that is for the convolution section. More specifically, the speedup is bounded by
the execution time of the convolution done to the original image, which is four times bigger than
the second biggest image that has convolution done to it which is the half-scaled image. So the
strategy of breaking up the convolution of the original into several different sections was
necessary, but the actual result says otherwise. By breaking up the convolution into several
sections, the program’s overhead of launching more threads to convolve those sections increases,
diminishing the amount of speedup that is possible. Even though there is no synchronization

12

required as each thread would be editing different sections of a shared data structure, the
overhead from launching several threads into doing the convolution limit the speedup and even
cause a decrease in performance. This is evident on our experiment with using different number
of convolution sections, which correspond to the number of threads being used. The more we
increased the number of sections, the worse our speedup became.

2. Cache misses
Through the use of “perf”, a performance measuring tool, we learned that our OpenMP

program has around 13% of all cache assess being cache misses on average. This did not bode
well for the section algorithm that relied heavily on its memory accesses and in the end became a
bottleneck for the speedup.

Figure 9. Output of a pref examining cache references and cache misses

3. Memory Traffic

We also used perf to determine how much the bus was being used. Here are the results:

Sequential: OpenMP:

As seen here, the sequential implementation around half the bus cycles than the OpenMP
version, which implies that it has half the amount of bus traffic than the OpenMP version. This
could explain the poor performance as the amount of bus cycles indicate that the memory traffic
is also a bottleneck. The more traffic on the bus, the need for memory coherency traffic also
increases between cores. While the CPU used in GHC machines uses a large inclusive shared L3

13

cache that filters coherency traffic between cores, having double the amount of memory traffic
would have a severe hit to the performance of the OpenMP version.

4. Sequential Nature
Throughout the algorithm, there exists sections of code that are sequential by nature. For

example, all the steps 3-5 of SIFT are all sequential because they rely on the output of the
previous step to generate their outcomes. In the find_corners_gradients,
find_keypoint_orientations, store_features, store_keypoints functions in the file that deals with
finding keypoints and generating features out of them, all of those functions needed to have
specific ordering in which they are called, eliminating the possibility of using #pragma omp
parallel task or #pragma omp parallel sections. Even further, these functions needed to have the
arrays/vectors they edit in their for loops be in a specific order to keep correctness from
sequential to parallel, eliminating the possibility of using #pragma omp parallel for as well.

Open MPI:

Overall, we achieved our target 3x speedup for certain functions with certain image sizes.

The above chart shows speedup of various functions compared to the sequential version(single

CPU) as a function of number of parallel processes. The magnitude and gradient calculation
function achieved high speedup whereas other functions like find finding keypoints actually

performed worse.

14

Speedup also varied with image size as the amount of work per thread increased.
For example, here are the speedups (relative to sequential) of the blur convolution function when
run on different sized images of the same image:

Image Size Convolution Blur Speedup

Full 2.16

Half 2.09

Quarter 2.07

Eighth 1.94

As you can see above, while minor, blur speedup still decreases as image size decreases. This is
caused by the decrease work per thread and thus time savings as the ratio of work to setup
overhead decreases. Such overhead includes assigning all the work to other tasks as well as the
communication overhead of sharing results between tasks.

The communication overhead becomes clear when we compare speedup to number of processes.
Much of the functions we parallelized had a low arithmetic intensity: simply comparing pixel
values and performing simple subtraction operations. Due to the high overhead of
communication, even with non-blocking, our program could only gain speedup with number of
processes until a certain point, as shown in the graph below:

Here above, we can see that speedup increases quickly initially from one to two processes, but starts to
slow in growth with number of processes. Eventually, at six processes, speedup is maximized before

speedup suddenly drops at seven and eight threads.

15

Also looking at our first graph of speedup for various functions, we noticed that our parallel
implementation of keypoint finding actually performed worse than the sequential by around
50%. This is disappointing since this was one of our minor attempts at task and data parallelism
where we perform extrema finding between two sets of three images. We allow the processes to
immediately start on the next extrema finding after performing non-blocking send and receive of
the previous set’s results. We speculate that this is caused by the low arithmetic intensity as we
are only performing an inequality check for every memory load of a pixel from an image. With
the memory overhead of assigning work, the parallel version would overall perform worse.

We also used perf to examine the memory traffic of our MPI version as well, and in this case
realized that there was a high communication overhead. But compared to the OpenMP version,
the bus communication is part of using a Message Passing Interface. While we do not have what
constitutes a “good amount of communication through the bus” that indicates efficient bus traffic
amount, we feel that having six times the amount of bus traffic is not a good sign and definitely
has a lot of unnecessary information movement.

Overall:

Comparing the two different methods we used to parallelize the code, we much prefer
using Open MPI than OpenMP. This is because OpenMP felt like a black box that we put our
code into, hoping to get some amount of speedup without much of an explanation as to why
certain techniques failed to achieve the results that we wanted. Open MPI yielded much more
consistent results and lead to better iterative progress between implementing types of parallelism
of the functions. The ability to inject parallelism through pointers and messages made for better
control over our code that OpenMP could not offer.

References:

- aishack.in, aishack.in/tutorials/sift-scale-invariant-feature-transform-introduction/.

- Mordvintsev, Alexander, and Abid K. Revision. Introduction to SIFT (Scale-Invariant Feature Transform),

16

http://aishack.in/tutorials/sift-scale-invariant-feature-transform-introduction/

opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html.

- Kumar, R. , Muknahallipatna, S. and McInroy, J. (2016) An Approach to Parallelization of SIFT Algorithm
on GPUs for Real-Time Applications. Journal of Computer and Communications, 4, 18-50. doi:
10.4236/jcc.2016.417002.

- "Computer Vision: Feature detection and m." UW CSE vision faculty,
courses.cs.washington.edu/courses/cse455/09wi/Lects/lect6.pdf?fbclid=IwAR3F3Vs3sK0a2BtInWO8M5_
NFSknCf7q857_rewX8qFlzxqN-uzb4BU0gyo.

Work done:
Hojun 45%, Alvin 55%

Hojun Alvin

Sequential pseudo code Sequential implementation

Sequential debugging Sequential debugging

OpenMP implementation Open MPI implementation

Open MPI debugging Open MPI debugging

Report Report

17

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html
http://dx.doi.org/10.4236/jcc.2016.417002
https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect6.pdf?fbclid=IwAR3F3Vs3sK0a2BtInWO8M5_NFSknCf7q857_rewX8qFlzxqN-uzb4BU0gyo
https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect6.pdf?fbclid=IwAR3F3Vs3sK0a2BtInWO8M5_NFSknCf7q857_rewX8qFlzxqN-uzb4BU0gyo

